AWS Certified Machine Learning – Specialty MLS-C01 – Question205

A machine learning (ML) specialist has prepared and used a custom container image with Amazon SageMaker to train an image classification model. The ML specialist is performing hyperparameter optimization (HPO) with this custom container image to produce a higher quality image classifier.
The ML specialist needs to determine whether HPO with the SageMaker built-in image classification algorithm will produce a better model than the model produced by HPO with the custom container image. All ML experiments and HPO jobs must be invoked from scripts inside SageMaker Studio notebooks.
How can the ML specialist meet these requirements in the LEAST amount of time?

A.
Prepare a custom HPO script that runs multiple training jobs in SageMaker Studio in local mode to tune the model of the custom container image. Use the automatic model tuning capability of SageMaker with early stopping enabled to tune the model of the built-in image classification algorithm. Select the model with the best objective metric value.
B. Use SageMaker Autopilot to tune the model of the custom container image. Use the automatic model tuning capability of SageMaker with early stopping enabled to tune the model of the built-in image classification algorithm. Compare the objective metric values of the resulting models of the SageMaker AutopilotAutoML job and the automatic model tuning job. Select the model with the best objective metric value.
C. Use SageMaker Experiments to run and manage multiple training jobs and tune the model of the custom container image. Use the automatic model tuning capability of SageMaker to tune the model of the built-in image classification algorithm. Select the model with the best objective metric value.
D. Use the automatic model tuning capability of SageMaker to tune the models of the custom container image and the built-in image classification algorithm at the same time. Select the model with the best objective metric value.

Correct Answer: B