AWS Certified Machine Learning – Specialty MLS-C01 – Question187

A data engineer needs to provide a team of data scientists with the appropriate dataset to run machine learning training jobs. The data will be stored in Amazon S3. The data engineer is obtaining the data from an Amazon Redshift database and is using join queries to extract a single tabular dataset. A portion of the schema is as follows:
TransactionTimestamp (Timestamp)
CardName (Varchar)
CardNo (Varchar)
The data engineer must provide the data so that any row with a CardNo value of NULL is removed. Also, the TransactionTimestamp column must be separated into a TransactionDate column and a TransactionTime column. Finally, the CardName column must be renamed to NameOnCard.
The data will be extracted on a monthly basis and will be loaded into an S3 bucket. The solution must minimize the effort that is needed to set up infrastructure for the ingestion and transformation. The solution also must be automated and must minimize the load on the Amazon Redshift cluster.
Which solution meets these requirements?

A.
Set up an Amazon EMR cluster. Create an Apache Spark job to read the data from the Amazon Redshift cluster and transform the data. Load the data into the S3 bucket. Schedule the job to run monthly.
B. Set up an Amazon EC2 instance with a SQL client tool, such as SQL Workbench/J, to query the data from the Amazon Redshift cluster directly Export the resulting dataset into a file. Upload the file into the S3 bucket. Perform these tasks monthly.
C. Set up an AWS Glue job that has the Amazon Redshift cluster as the source and the S3 bucket as the destination. Use the built-in transforms Filter, Map, and RenameField to perform the required transformations. Schedule the job to run monthly.
D. Use Amazon Redshift Spectrum to run a query that writes the data directly to the S3 bucket. Create an AWS Lambda function to run the query monthly.

Correct Answer: C